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RELATIONSHIP BETWEEN THE FLOW PARAMETERS OF CONCENTRATED 

HIGH-POLYMER SOLUTIONS AND THEIR MEAN-STATISTICAL 

ORIENTATIONAL STRUCTURE 

V. I. Popov UDC 532.7 

The questions of the quality of polymer processing, for example by the methods of extru- 
sion technology, and the production of high modular polymeric materials largely depend on 
the existence of a monitorable relationship between the external parameters of the process- 
ing of polymer media and their internal microstructure. 

In this work this problem is analyzed for concentrated solutions of high-polymers (CSH) 
with the help of the structural~henomenological model of polymers [I, 2]. The model is 
based on structural representations of the uniform, isotropic fluctuation network (Fig. i), 
describing the specific structural features of CSH, consisting of the fact that in the single- 
relaxation approximation the concentrated polymer solution in a low-molecular solvent is 
modeled as a collection of statistically distributed effective network sites (segments) of 
rubbing with the solvent, spatially linked with one another by elastic subchains with kinetic 
rigidity. Kinetic rigidity refers to the well-known fact that a subchain cannot assume some 
conformations by a relative displacement of its tips. 

The determination of the mean-statistical orientational structures of CSH follows from 
their rheodynamic description and the construction of the model. An important question ad- 
dressed by the microscopic description of CSH is taking into account the interaction of the 
structural units of flow with their environment in the field of shear, entropic, and diffu- 
sion forces. In this case, this is the interaction of the randomly distributed network sites 
of rubbing with the solvent, linked with one another by elastic subchains with rigidity. 
Unlike theories for weakly concentrated solutions of polymers with solitary macromolecules 
[3-5] the interaction is sought relative to the center of mass 0 of the sites xi ~, neighbor- 
ing the xi chosen for the analysis. The result is the mean stress, i.e., the reaction to ex- 
ternal effect G of the statistically distributed rubbing sites interacting with one another 
(by means of the bonds) and with the solvent. 

The physics of the phenomenon is as follows. At rest, the effective site of CSH, driven 
by Brownian forces of thermal motion and entropy forces pulling toward the center, undergoes 
around the center of mass a random walk with a rapidly decreasing Gaussian probability density 
distribution function. The matrix of the components of the moments of the probability den- 
sity distribution function of such a walk has an equivalent diagonal form, and the radius 
vector (Fig. i) of the deviation equals x = 0.25sb 2 (b is the length of the segment of rubbing, 
s is the number of segments in the subchain of the macromolecule). 

Under the action of the external ordering forces, aside from these forces a Stokes fric- 
tion force, owing to the defect in the velocity of the random walk of the site and the solvent 
at this point, and an internal friction force, associated with the fact that the segments 
of the subchains cannot assume all possible conformations by means of the relative displace- 
ment of their tips (the property of kinetic rigidity), act on the site. 

In this case of distinguished directions, the probability density distribution function 
of the position of the sites will become distorted. The radius vector, the probability of 
whose length characterizes the deviation of the sites from the position of equilibrium, in 
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Fig. 1 

the region of existence of the distribution function will now describe the configuration 
of an ellipse. The tensor of the moments of the distribution function will acquire not only 
diagonal, but also symmetric components. The angle X of one of the principal axes of the 
ellipse to the direction of the flow is a quantitative measure of the most probable (for 
given G) orientational structure of the CSH. 

Under the external action, however, the transition of the CSH from one equilibrium state 
to another is not realized instantaneously (as is achieved in practice for low-molecular 
liquids), but rather after some time, corresponding to the time of internal structural rear- 
rangements~, i.e., relaxation time. 

It is necessary to have an equation for the transition, which at each moment in time 
will be determining for the stress tensor - this is the relation for the moments of the proba- 
bility density distribution function, which describes the kinetics of the deviation of the 
position of the sites from their equilibrium states and characterizes the change in the mean- 
statistical[ orientational structure of the medium as a function of time. 

Using this approach [I, 2], an expression for the stress tensor, determined in terms 
of the probability density distribution function of the positions of the rubbing sites, and 
the kinetic equation for these moments were obtained. In this case, the dimensionless sys- 
tem of equations of motion of the incompressible CSH for the case of a known constant flow 
rate has t]he form 

, . . . .  , . (1) 
H~ Otvi + v~O~vi = -- ~p + Oj~ij; 

! t I 

~[j = R~ -~ am~ + R ~  1 (<xj~xi> ,~j + <x~xj> ,~i - ( 2 )  

r r i 

H ~ a t  <x~xj> + ~jaj <x~x~> = <xkxj> (vk~ - aek~) + ( 3 )  
r p - 

+ <xhx~> (~hj - ~ e h j ) -  2 We  -~ (<x~xD - 6~j); 

0~v~ = 0, i ,  ] = l ,  2, 3. 

( 4 )  

Here  p '  = p/p<w> 2 i s  t h e  h y d r o d y n a m i c  p r e s s u r e ;  5 i j  i s  t h e  K r o n e c k e r  d e l t a ;  v i j '  = v i jL /<w> 
is the tensor of the velocity gradients; eij' = eijL/<w> is the syrmnetric tensor of the strain 
rates vi' = vi/<w>; <w> is the mean velocity of the flow; L is the linear distance over which 
the liquid is in the varying velocity field; <xixj> = fxixjW(x, t)dV are the moments of the 
probability density distribution function of the position of the rubbing sites (segments); 
V is the volume; t' = t/T.~ is the time; H 0 = <w>T,/L is the homochronicity criterion; Re = 
p<w>L/~, Rep = p<w>L/~p are, respectively, Reynolds number with a solvent viscosity ~ and the 
viscosity of the polymer solution Dp = 0.5E< [for the viscosity in the limit G + 0, see Eq. 
(6)]; We = <<w>/L is Weissenberg's criterion for relaxational homochronicity; a is the kine- 
tic rigidity of subchain segments in the network; K = ~sb2/12kT is the time of internal struc- 
tural rearrangements (characteristic relaxation time) after removal (application) of the 
strain; ~ = 0.5zkT is the modulus of high elasticity. In the general case the coefficients 
e, <, ~ of the model are variable quantities [2]. 
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In connection with the fact that for CSH p << pp, in the case when the coefficients are 
constant their motion is characterized by the following set of primary complexes: H0, Rep, 
We, a. Linear combinations of these complexes are used to construct other complexes which 
determine the flow process under study: We/H 0 ~ De = N/T, - Debor's criterion, We/Rep E E~ = 
Kpp/pL 2 - the criterion of elasticity. 

A new parameter describing the flow of CSH, compared with the well-known parameters 
for Newtonian liquids, is Weissenberg's criterion. It can be shown from the system (i)-(3) 
for the example of a stationary flow of CSH in channels that this criterion provides a quan- 
titative measure of the mean-statistical orientational structure in the field of shear forces. 

For the velocity field v = v(y), w = u = 0 and for the usual boundary conditions vii = 
G(y), eij = 0.SG(y). From (3) we arrive at a system of algebraic equations for the moments 

(x3X3) = ( x l x 3 )  = O, ( x a x 3 )  = i ,  

(t - -  0,5~z)G(y) (xlx3 > --  u-~((x, xl > - -  i )  = O, 

(1- -0 ,5  a)G(y)  (x~x3 ) - -  0 ,5aG(y )  ( x l x l  ) - -  2• -1 (XlX2 > ~-- 0,. 

0,5aG(y) (xlx . , )  ~- z - ~ (  (x3x: ) - -  1 ) =  O. 

Therefore, 

(1 - -  =) • (y) 
( x l x2> = 2 (1 + 0,5cz (1 -- 0,5=) ~3G2 (y)) " 

i + 0,5 (i - -  0,5=) • (y) 
< x l x l )  = 

1 ,-~ 0,5= (t - -  0,5=) • (y) ~ 

t q- 0,25=• 3 (y) 
<x2x2> = t" -~" 0 , 5 =  (t  - -  0 ,5=)  u3G 3 (y) " 

( s )  

We note that a one-dimensional flow corresponds to the spatial variation of <xixj>. 

According to (5), the expressions for the nonzero components of the stress tensor have 
the form 

e• l + 0,25=• (y) G (y) ;  
Tl2 = T l ~- 0,5= (1 --  0,5=) • (y) 

P l l  - -  P32 = _e (1 --  =) • (y) 
2 l + 0,5= (t - -  0,5=) • (y) 

P.~2-- Paa = 0 -  

( 6 )  

(7)  

( 8 )  

By the method of orthogonal transformations [6], representing the components of the 
symmetric tensor ~<xixj>[[ in terms of their principal values, we find the orientation angle 
X of the mean-statistical structure of the CSH to the direction of the flow (see Fig. i): 

( x l z l )  - -  (x2x2> = 0,5•  = c tg  2 Z. ( 9 )  
2 (x lx~)  

On t h e  c h a n n e l  a x i s  G = 0 ,  Xi = 4 5 ~  a n d  on t h e  w a l l  c o t a n 2 x 2  = 0 . 5 ~ d v / d Y l c ,  a n d ,  i n  
a d d i t i o n ,  X1 > X2. 

T h u s ,  when a CSH f l o w s  i n  a c h a n n e l ,  a m e a n - s t a t i s t i c a l  o r i e n t a t i o n a l  s t r u c t u r e ,  w h i c h  
i s  c o n t r o l l e d  b y  o r i e n t i n g  ~ s b 2 G ( y )  a n d  d i s o r i e n t i n g  ( k T )  e f f e c t s ,  f o r m s  o v e r  t h e  c r o s s  s e c -  
t i o n  o f  t h e  c h a n n e l .  
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If it is assumed that the angles of orientation of the structural and optical polariza- 
bility of the CSH are equal, then they can be measured directly by the method of birefringence 
[4]. The angles of orientation of the structural and mechanical (P11 - P22/2~12) polarizabil- 
ity are equal only under the assumption of freely linked (ideal, ~ = 0) subchains of macromole- 
cules of the CSH. 

The velocity gradient is determined from Eq. (6) [2] or some empirical relation ~ = f(G). 

For example, expressing the velocity gradient on the wall of the pipe by the well-known 
method [7], independent of the properties of the liquid under study, dv/dr[c = -(3n' + I/4n')" 
8<w>/D [n' = d in (DAp/4L)d in (8<w>/D)] and taking into account the property of the trigono- 
metric function (9), we note that the theoretical region of variation We = <<w>/L in circular 
and flat channels can fill in the range from 0 to -15 and -20, respectively. These quantities 
correspond to a virtually maximally oriented structure of CHS at the wall of the channel 
( x< i~  

In connection with the fact that under the action of external mechanical forces orienta- 
tional phenomena are always accompanied by thermal (e - kT) disorienting phenomena, which 
themselves give rise to P11 - P22 (7) the quantity We must evidently be of the order of unity. 

The well-known decrease in the viscosity of CSH as G increases, as is evident from (6), 
is associated with the orientational phenomena under the action of external forces owing 
to the property of the kinetic rigidity of the polymer. It is evident from Fig. 2 that the 
decrease in the resistance [r = (2L/p<w>2)Sp/Sx, L = 4hi under conditions of a stationary 
flow of CSH in a flat channel is also determined by orientational phenomena. In addition, 
structures with higher rigidity are oriented more rapidly. 

The results of this study could be useful for establishing relationships between the 
mean-statistical orientational structure and the parameters of Couette and Poiseuille flows 
of CSH [8]. 
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